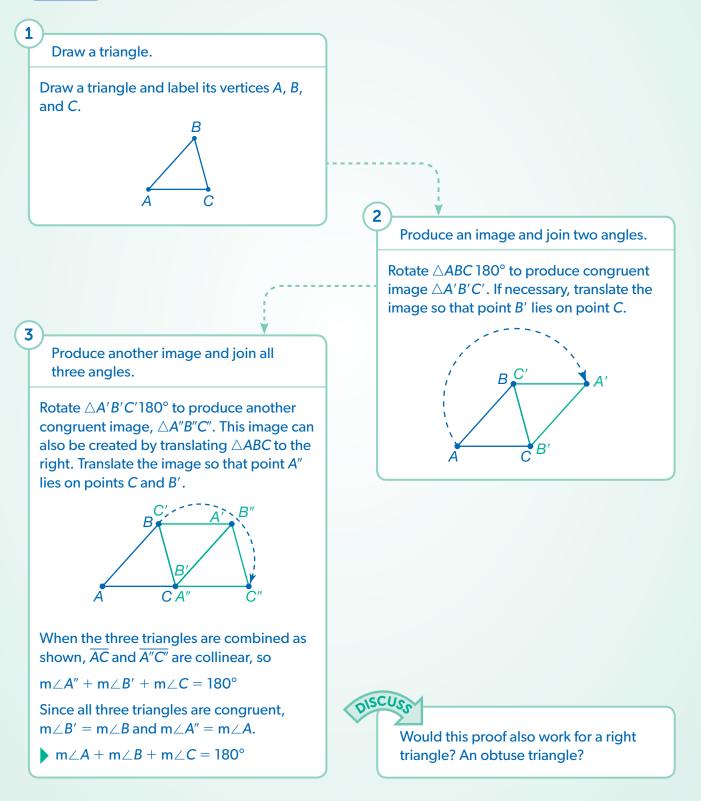
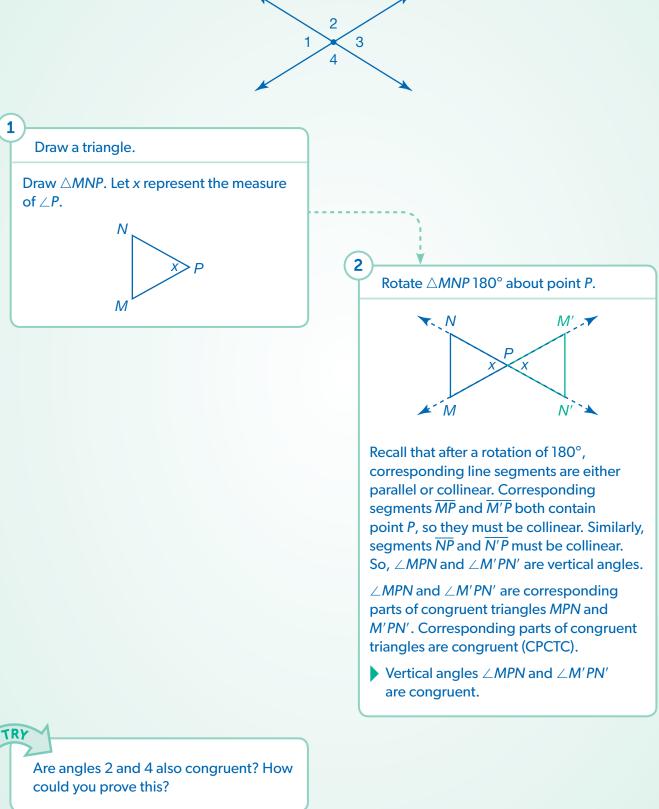
Using Congruence to Prove Theorems

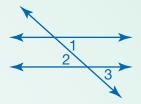
EXAMPLE A Prove that the sum of the measures of the interior angles of a triangle is 180°.



EXAMPLE B Non-adjacent angles formed by two intersecting lines are called vertical angles. Angles 1 and 3 are vertical angles. Use a 180° rotation of a triangle to prove that vertical angles are congruent.

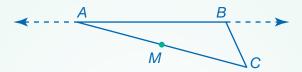


EXAMPLE C The diagram on the right shows two parallel lines cut by a transversal. Alternate interior angles are angles that lie between two parallel lines, are each adjacent to a different parallel line, are both adjacent to the transversal, and lie on opposite sides of the transversal. In the diagram on the right, $\angle 1$ and $\angle 2$ are alternate interior angles.



Corresponding angles are angles that lie on the same side of the transversal and the same side of different parallel lines. $\angle 1$ and $\angle 3$ are corresponding angles.

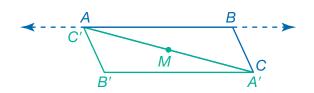
On $\triangle ABC$ below, point *M* is the midpoint of \overline{AC} . Use this triangle to prove that alternate interior angles are congruent and corresponding angles are congruent.



Rotate $\triangle ABC 180^\circ$ around point *M*.

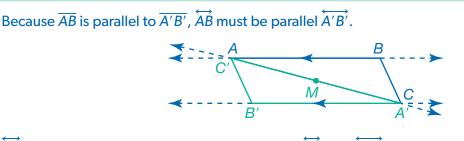
1

2



Rotating \overline{AB} from the preimage produces corresponding side $\overline{A'B'}$ in the image. Corresponding sides are parallel after a rotation of 180°, so $\overline{AB} \parallel \overline{A'B'}$.

Extend $\overline{A'B'}$ and \overline{AC} into lines.



 \overrightarrow{AC} is a transversal that cuts across parallel lines \overrightarrow{AB} and $\overrightarrow{A'B'}$.

3)-

4

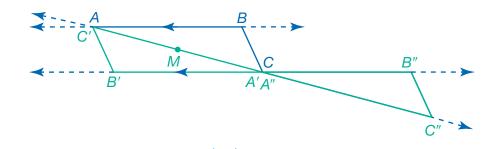
Compare alternate interior angles.

Angles BAC and B'A'C' are alternate interior angles.

Rotation is a rigid motion, and rotating $\angle BAC$ produced $\angle B'A'C'$, so these two angles must be congruent.

 $\angle BAC \cong \angle B'A'C'$

Rotate $\angle A'B'C'$ 180° around point A'.



 $\overline{A''B''}$ is collinear with $\overline{A'B'}$, so it is part of $\overline{A'B'}$. $\overline{A''C''}$ is collinear with $\overline{A'C'}$, so it is part of the transversal.

Compare alternate interior angles.

Angles BAC and B"A"C" are corresponding angles.

Rotating $\angle B'A'C'$ produced $\angle B''A''C''$, so $\angle B'A'C'$ must be congruent to $\angle B''A''C''$.

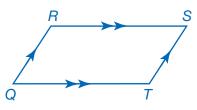
Angle B'A'C' is congruent to angle BAC, so angle B''A''C'' must also be congruent to angle BAC.

 $\checkmark \angle B''A''C'' \cong \angle BAC$

How could knowing about vertical angles help you determine that $\angle 1$ and $\angle 3$ are congruent?

Practice

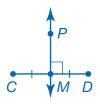
Show that in parallelogram *QRST*, opposite angles $\angle Q$ and $\angle S$ are congruent by following the instructions and filling in the blanks.



- **1.** Draw diagonal \overline{RT} on the figure.
- 2. Rotating $\triangle RQT$ ______° around the midpoint of _____ will produce an image that covers $\triangle TSR$.

3.	$\angle Q \cong \angle Q'$	Corresponding angles are
	$\angle Q' \cong \angle S$	CPCTC
	∠ Q ≅	Transitive Property of Congruence

Line *PM* is the perpendicular bisector of \overline{CD} . Show that point *P* is equidistant from the endpoints of \overline{CD} by following the instructions, filling in the blanks, and answering the questions below.



- **4.** \overrightarrow{PM} is the perpendicular bisector of \overrightarrow{CD} , so $\angle PMC$ and $\angle PMD$ are both ______ angles and \overrightarrow{CM} is congruent to ______.
- 5. Draw line segments \overline{CP} and \overline{DP} on the figure. Triangles CMP and DMP share side _____.
- **6.** Which theorem or postulate can be used to prove that $\triangle CMP \cong \triangle DMP$?

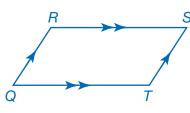
List the sides and angles of $\triangle CMP$ and $\triangle DMP$ that you know are congruent.

7. Corresponding sides of congruent triangles have equal lengths, so PC = _____. This means that point P is equidistant from points ______ and _____.

Use isosceles triangle *DEF* to prove that the base angles of an isosceles triangle are congruent. Follow the directions and fill in the blanks below.

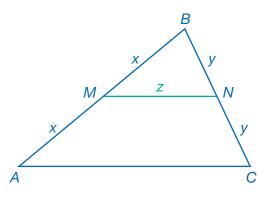
- **8.** On the figure above, draw the median from angle *E* to side \overline{DF} .
- 9. By definition, a median connects a vertex to the ______ of the opposite side. So, point *M* divides DF into two congruent segments, DM and ______. Mark these segments as congruent on the figure.
- **10.** The marks on the diagram show that the triangles have two pairs of congruent __________ Median \overline{EM} is shared by both triangles, so by the reflexive property, $\overline{EM} \cong \overline{EM}$.
- Three sides of △DME are congruent to three sides of ______, so those triangles are congruent by _____.
- **12.** Corresponding parts of congruent triangles are _____, so $\angle D \cong$ _____.

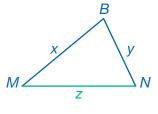
Use parallelogram *QRST* to prove that opposite sides of a parallelogram are congruent. Follow the directions, fill in the blanks, and answer the questions below.



- **13.** Draw diagonal \overline{QS} on the figure above to cut the parallelogram into two triangles.
- Because QRST is a parallelogram, RS and ______ are parallel lines. QS can be seen as a transversal. Angles RSQ and ______ are alternate interior angles, so they must be congruent.
- 15. QR and ______ are also parallel lines, and ______ is also a transversal cutting across these lines. Angles RQS and TSQ are ______, so they must be congruent.
- 16. Triangles *RQS* and *TSQ* share side _____, so they have at least one congruent side.
- **17.** So, $\triangle RQS \cong \triangle TSQ$ by ______ Theorem.
- **18.** \overline{RS} must be congruent to \overline{TQ} and \overline{RQ} must be congruent to \overline{TS} because ______ parts of congruent triangles are ______.

Use $\triangle ABC$ and its top half, $\triangle MBN$, to show that the segment connecting the midpoints of two sides of a triangle is parallel to the third side and half the length of the third side. Follow the directions and answer the questions below.





19. Using $\triangle MBN$ on the right, draw the rotated image $\triangle M'B'N'$ after a 180° rotation of $\triangle MBN$ around the midpoint of \overline{MN} . Label the lengths of the sides using x, y, and z.

Then, draw the rotated image $\triangle M''B''N''$ after a 180° rotation of $\triangle M'B'N'$ around the midpoint of $\overline{B'N'}$. Label the lengths of the sides using *x*, *y*, and *z*.

Finally, draw the rotated image $\triangle M''B'''N'''$ after a 180° rotation of $\triangle M'B'N'$ around the midpoint of $\overline{B'M'}$. Label the lengths of the sides using *x*, *y*, and *z*.

20. Find the lengths of the following segments in terms of *x*, *y*, and *z*:

 $AB = _$ $M''B = _$ $CB = _$ $N'''B = _$

How does $\angle ABC$ compare to $\angle MBN$?

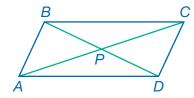
Use a postulate or theorem to prove that $\triangle ABC$ is congruent to $\triangle M''BN'''$, which you drew.

21. $\overline{M''N''}$ and $\overline{M'''N'''}$ can be combined to form $\overline{M''N'''}$. Compare \overline{MN} to $\overline{M''N'''}$. Are the segments parallel, perpendicular, collinear, or none of these? Why?

How does the length of $\overline{M''N''}$ compare to the length of \overline{MN} ?

Complete the proofs.

22. PROVE Parallelogram *ABCD* has diagonals *AC* and *BD*. The diagonals intersect at point *P*.



Prove that the diagonals of a parallelogram bisect each other by filling the two-column proof below.

Statements	Reasons
1. \overline{AC} and \overline{BD} are diagonals of parallelogram <i>ABCD</i> .	Given
2. <u>BC</u> <u>AD</u>	Opposite sides of a are parallel.
3. ∠BCA \cong ∠DAC	angles are congruent.
4. $\angle CBD \cong \angle ADB$	angles are congruent.
5. $\overline{BC} \cong \overline{AD}$	Opposite sides of a are congruent.
6. $△$ <i>BPC</i> \cong $△$ <i>DPA</i>	
7. $BP = DP$ and $AP = CP$	

23. **PROVE** Rectangle ABCD has diagonals AC and BD. Prove that the diagonals are congruent.

